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An oxygen story 



Motivation: Why oxygen? 

a) the extensive knowledge of its gas-phase photochemistry achieved in Nijmegen 

b) Rich photochemistry possible in an all O-atom system 

c) The discovery of significant amounts of O2-ice in two recent direct studies of comets: 

  67P/Churyumov–Gerasimenko and 1P/Halley 

      Both of these comets are well known of containing primordial ice, the H2O and O2 is fixed 

 



Motivation: 67P/Churyumov–Gerasimenko  

Jupiter-family comet 
Originally Kuiper belt 
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Mass spectrometer data 



67P/Churyumov–Gerasimenko observed by Rosetta 

O2 is relevant in the ISM!  



Photodesorption from ice-covered grains 

T = 10-100K 

too much gas! 

Photodesorption by 

UV-VUV light 

What are the reaction 
Products when cold ice surfaces 
Are exposed to UV/VUV light 



Previous work: Time-of-Flight Mass spectroscopy work 
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When electronic relaxation of a solid sample is 

fast (< 1 fs) compared to nuclear motion, the 

speed distributions of photo-ejected products 

follow Maxwell-Boltzmann statistics. 

Desorption of O2 from a Pt crystal at 320 nm 



Previous work II: Time-of-Flight Mass spectroscopy combined with state-selective 
ionization 

REMPI-TOF-MS   with H, O(3P), OH, H2O detection 

Kawasaki, Watanabe, and coworkers 



from OH (after 10K shots) 

Photochemically produced O, O2 
 

Molecules thermally accommodated at 82K surface 

O2 formation after irradiation of water ice with 157 nm 



Overview of a Time-of-Flight experiment (one axial information) 
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It is well known that O-atom REMPI at 226 nm also dissociates O2 
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Photodissociation  recoil of the O-atom fragments 
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The velocity distribution of 

the O+ ion can reveal it’s 

molecular origin 



Principle of VMI 

Principle of VMI: 
Each charged particle with the same 
direction and velocity will be mapped 
at the samepoint of a 2D detector 

Photon kinematics 

Photodissociation Velocity Map Imaging Electrostatic lens 

F(Θ) = [1+βP2(cos Θ)]/4π Angular distribution: 

Newton Sphere 



Velocity Map Imaging records the recoil pattern for any Δt, showing different origins of 
O(3P) atoms 
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What to expect? Photolysis of oxygen ice 

- O atom leaving the surface 
- O2 molecule leaving the surface 
- O atom recombination to O2*, O3 

 

Thermal 

Kick-out: O or O2* 

D0 5.117 eV (<242 nm)  O(3P) + O (3P) 
D1 7.084 eV (<175 nm)  O(3P) + O (1D) 
D2 9.051 eV (<137 nm)  O(1D) + O (1D) 

D0 



Imaging results 

• Photodesorption at 250 and 320 nm (respectively 4.96 eV and 3.87 eV) 

 

• Detection of O2 X by 2+1 REMPI at 225 nm 

• Detection of O2 a by 2+1 REMPI at 315 nm 

 

• Detection of O(3P) by 2+1 REMPI at 225.6 nm 

• Detection of O(1D) by 2+1 REMPI at 203.5 nm 



Desorption of O(3P2) from 15 Kelvin O2-ice at 250 and 320 nm 
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Ts = 10 K, ~97 ML O2-ice 

λdes = 250 nm, P = 500 μJ 

λdet = 225.691 nm [O(3P2)
+], P = 100 μJ 

z = 1.5 mm (estimated) 

Total Maxwell-Boltzmann 

T1 =  550 ± 50 K 

T2 =  130 ± 30 K 

T3 =    20 ±   5 K 
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Ts = 10 K, ~97 ML O2-ice 

λdes = 250 nm, P = 500 μJ 

λdet = 225.691 nm [O(3P2)
+], P = 100 μJ 

z = 1.5 mm (estimated) 

Total Maxwell-Boltzmann 

T1 =  134 ± 20 K,   A1 = 3.0E-7 

T2 =  600 ± 50 K,   A2 = 4.5E-8 

T3 =    32 ±   5 K,   A3 = 1.4E-6 
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Desorption of O(3P2) from 15K O2-ice at 250 nm 
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MOVIE of Desorption of O(3P2) from 15 Kelvin O2-ice at 250 



Photodesorption of pure O2 ice at 20 K using 250 nm 

(Δt = 6 μs) 

Formation of O(1D) and  
power scan confirms two 
-photon absorption (TPA) event 



REMPI spectrum: Confirmation of  O2 (a 1Δ) 

Ts = 10 K, ~80 ML O2-ice 

λdes = 250 nm, P = 600 μJ 

λdet = REMPI 641 – 645 nm[O2
+],  

Pdet = 1500 μJ 

z = 1.5 mm 

Slanger, Lewis, Journal of Molecular Spectroscopy 219 (2003) 200–216 

62201 cm-1 

Shape of image: molecules are from 

surface, not from photodissociation of 

O3 in probe beam 



Temperature to mechanism 

O,O* 
O2,O2* 

O2*,O2(J*) 
O2(cold) 

250nm        550K         130K          

320nm        270K           90K         20K 

O      O 

Two-photon 

dissociation- 

recombination 

O-atom 

recombination 

at surface? 

kick-out 



Discussion 

• O2* (a,b) is known to rapidly destroy O3 in the gas phase 

• O2* (a) is produced while photodesorbing water ice 

• Could VUV irradiation of water ice in the ISM cause build-up of O2 in primordial ice with little O3 
formation? 



Conclusion 

• Combination of VMI with ice is good and results in not too bad images 

• VMI greatly enhance ToF-MS by identifying molecular origin of O-atom signals 

• Primary process is the TPA of the oxygen ice resulting in O2 photodissociation and recombination 
to produce energetic O atoms and metastable oxygen molecules. 
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EXTRA: Time-of-Flight of different origins at 250 nm and 15 Kelvin 


