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Dutch Astrochemistry Network II

With DAN-II we try to understand the lifecycle of molecules in the
interstellar medium:

Rate coefficients are used in astrochemical models to predict the

evolution of molecules in the interstellar medium.
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Obtaining rate coefficients

• Rate coefficients not directly obtained experimentally −−→
quantum calculations.

• Benchmark these calculations to the highest level of
experiment.

• NO is a perfect benchmark system: experimentally
convenient.

• Extend to astronomically relevant systems containing: OH,
CH, NH3, H2, CO,...
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Calculating scattering cross sections

Rate coefficients are derived from scattering cross-sections
obtained by solving the nuclear Schrödinger equation using the
following Hamiltonian:

Ĥ = − ~2

2µR

∂2

∂R2
R +

ˆ̀2

2µR2
+ ĤA(rA) + ĤB(rB) + V̂ (rA, rB ,R)

Potential energy surface (PES) obtained from electronic structure
calculations.

An accurate PES is essential to the scattering dynamics.
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Experimental set-up

Cold and controlled collision experiments to test PESs.

• Low collision energies: PES sensitive to resonances.
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Scattering resonances at low collision energies

Shape resonance
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NO-He collision experiments

Nearly perfect agreement
between theory and experiment.

Scattering resonances are
observed.

1 cm−1 ≈ 1.5 Kelvin
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Change of experimental set-up

Decreased scattering angle to 10◦ → lower collision energies.

Matthieu Besemer 28th November 2018 NO-He 8 / 29



New NO-He collision experiments at lower energies

Position of measured and theoretically calculated resonances do
not match for the jNO = 0.5f → j

′

NO = 0.5e transition.
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Experiment

NO-He PES is not sufficiently accurate.

[1] J. K los et al., Chem. Phys. 112, 2195 (2000).
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Shift in resonances

Deeper potential well → shift in
scattering resonances to lower
energies.

Depth of the well is directly probed
with scattering experiments.
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Computation of NO-He PESs

NO is an open-shell Π-state
molecule (in the ground state).

V(R,Θ) = (ENO−He − ENO − EHe)

We use the CCSD(T) method.

1824 unique ab-initio points, 12
hours per point (AV6Z).

rNO is kept fixed → 2D-potential.
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Effect of electronic basis-sets

Increasing the size of basis-sets
gives improved interaction
energies.

Complete Basis Set (CBS)
extrapolation estimates the
interaction energy as if a
complete basis-set is used.
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Cross-sections with the CBS potential

The CBS potential shows a significant improvement.
jNO = 0.5f → j

′
NO = 0.5e
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Experiment

Remaining disagreement due to:
vibrational motion, electron correlation effects, Born-Oppenheimer
approximation?
[1] J. K los et al., Chem. Phys. 112, 2195 (2000).
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Angular distributions

Agreement not perfect at CCSD(T)/CBS.
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From CCSD(T) to CCSDT(Q)

CCSDT(Q) deepens the well by
as much as 0.8 cm−1 compared
to CCSD(T)/CBS.
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Cross sections with the CCSDT(Q) potential

Some parts agree better with the experiment.

jNO = 0.5f → j
′
NO = 0.5e
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Angular distributions

Better agreement at CBS+CCSDT(Q) level.
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Born-Oppenheimer approximation

Born-Oppenheimer (BO) approximation: assumes separation
between nuclear and electronic motion.

Not accurate for NO due to first derivative coupling terms
(Πx/Πy ).

Second derivative coupling terms are small and normally ignored.

The Diagonal Born-Oppenheimer Correction (DBOC) partially
accounts for second derivative coupling terms:

EDBOC =
Ncoor∑
I

〈Ψe | −
1

2MI
∇2

I |Ψe〉

Calculated with the CFOUR program:

• Works fine for closed-shell systems (CO-He).

• Difficult for open-shell systems (Work in progress!)
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Future plans for NO-He

• We will investigate the effect of including the Diagonal
Born-Oppenheimer Correction.

• Analyze what types of resonances we are dealing with, shape
or Feshbach.

• Analyze and decompose differential cross-sections into
individual partial wave contributions.
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Ongoing and future projects

Molecule-Atom/Molecule collisions:

• NH3-H2

• CH4-He (Taha Selim)

• CO-H2 (Ad van der Avoird)

• CO2-He (Taha Selim)

• HCCH-He (Taha Selim)

• NH3-NO (Daan Snoeken & Matthieu Besemer)

Molecule-Molecule collisions can have pair-correlated
cross-sections.
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Exciting project on NH3-NO

Master student:
Daan Snoeken
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Questions?
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Back-up slides: Angular distributions at the resonances
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Back-up slides: Vibrational averaging of N-O

The NO molecule is not rigid.
Ideally, one would like to
construct a full 3D-potential.
However, an approximation can
be made.

Calculate the interaction energy
of the NO-He complex at
different rNO values and average
them.

〈V (R)〉 =
〈Ψ0(r)|V (r ,R)|Ψ0(r)〉
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Back-up slides: Effect of vibrational averaging of N-O on
ICS

Averaging over the vibrational
motion of NO has no
significant effect on the
interaction potential of the
NO-He complex.

So we need something else
that will explain the
differences between theory
and experiment.
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Back-up slides: Born-Oppenheimer approximation

In the Born-Oppenheimer approximation one assumes a separation
between the nuclear and electronic motion.

If you start from the exact Schrödinger equation you end up with
two non-adiabatic coupling terms.

In the Born-Oppenheimer approximation all the coupling terms are
neglected.

In general, the Born-Oppenheimer approximation is accurate when
the separation of the electronic energies is large, for NO this is not
the case.
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Back-up slides: Diagonal Born-Oppenheimer correction

The diagonal Born-Oppenheimer correction is a correction to the
electronic energy due to the nuclear motion:

EDBOC =
Ncoor∑
I

〈Ψe | −
1

2MI
∇2

I |Ψe〉

There are two ways of calculating this quantity:

1 analytical gradient techniques

2 the finite differences approach
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